GenericFroemkeDanStdpSynapse< BaseSyn > Class Template Reference

STDP due to Froemke and Dan Nature 416 (3/2002). More...

#include <GenericFroemkeDanStdpSynapse.h>

Inheritance diagram for GenericFroemkeDanStdpSynapse< BaseSyn >:

Inheritance graph
[legend]
Collaboration diagram for GenericFroemkeDanStdpSynapse< BaseSyn >:

Collaboration graph
[legend]

List of all members.

Public Member Functions

virtual double stdpLearning (const double &delta, const double &t_post, const double &t_pre, const double &t_prev_post, const double &t_prev_pre)
virtual double maxRelevantSpikeTimeDiff ()

Public Attributes

bool useFroemkeDanSTDP
 activate extended rule by Froemke and Dan (default=1)
float tauspost
 Used for extended rule by Froemke and Dan. See Froemke and Dan (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416 (3/2002).
float tauspre
 Used for extended rule by Froemke and Dan.
float taupos
 Timeconstant of exponential decay of positive learning window for STDP.
float tauneg
 Timeconstant of exponential decay of negative learning window for STDP.
float STDPgap
 No learning is performed if $|Delta| = |t_{post}-t_{pre}| < STDPgap$.
float Wex
 The maximal/minimal weight of the synapse [readwrite; units=;].
float Aneg
 Defines the peak of the negative exponential learning window.
float Apos
 Defines the peak of the positive exponential learning window.
float mupos
 Extended multiplicative positive update: $dw = (Wex-W)^{mupos} * Apos * exp(-Delta/taupos)$. Set to 0 for basic update. See Guetig, Aharonov, Rotter and Sompolinsky (2003). Learning input correlations through non-linear asymmetric Hebbian plasticity. Journal of Neuroscience 23. pp.3697-3714.
float muneg
 Extended multiplicative negative update: $dw = W^{muneg} * Aneg * exp(Delta/tauneg)$. Set to 0 for basic update.


Detailed Description

template<class BaseSyn>
class GenericFroemkeDanStdpSynapse< BaseSyn >

STDP due to Froemke and Dan Nature 416 (3/2002).

Implements the basic weight update for a time difference $Delta = t_{post}-t_{pre}$ with presynaptic spike at time $t_{pre}$ and postsynaptic spike at time $t_{post}$. Then, the weight update is given by $dw = Apos * exp(-Delta/taupos)$ for $Delta > 0$, and $dw = Aneg * exp(-Delta/tauneg)$ for $Delta < 0$. (set $useFroemkeDanSTDP=0$ and $mupos=muneg=0$ for this basic update rule).

It is also possible to use an extended multiplicative update by changing mupos and muneg. Then $dw = (Wex-W)^{mupos} * Apos * exp(-Delta/taupos)$ for $Delta > 0$ and $dw = W^{mupos} * Aneg * exp(Delta/tauneg)$ for $Delta < 0$. (see Guetig, Aharonov, Rotter and Sompolinsky (2003). Learning input correlations through non-linear asymmetric Hebbian plasticity. Journal of Neuroscience 23. pp.3697-3714.)

Set $useFroemkeDanSTDP=1$ (this is the default value) and use $tauspost$ and $tauspre$ for the rule given in Froemke and Dan (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416 (3/2002).

Definition at line 38 of file GenericFroemkeDanStdpSynapse.h.


Member Function Documentation

template<class BaseSyn>
double GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning ( const double delta,
const double t_post,
const double t_pre,
const double t_prev_post,
const double t_prev_pre 
) [inline, virtual]

Reimplemented in GenericDAModulatedSTDPSynapse< GenericFroemkeDanStdpSynapse< GenericEachPairStdpSynapse< GenericStaticSpikingSynapse< GenericCurrentBasedSpikingSynapse< ExponentialDecaySpikeResponse > > > > >, GenericDAModulatedSTDPSynapse< GenericFroemkeDanStdpSynapse< GenericEachPairStdpSynapse< GenericDynamicSpikingSynapse< GenericCurrentBasedSpikingSynapse< ExponentialDecaySpikeResponse > > > > >, GenericDAModulatedSTDPSynapse< GenericFroemkeDanStdpSynapse< GenericEachPairStdpSynapse< GenericDynamicSpikingSynapse< GenericConductanceBasedSpikingSynapse< ExponentialDecaySpikeResponse > > > > >, GenericDAModulatedSTDPSynapse< GenericFroemkeDanStdpSynapse< GenericEachPairStdpSynapse< GenericStaticSpikingSynapse< GenericConductanceBasedSpikingSynapse< ExponentialDecaySpikeResponse > > > > >, and GenericDAModulatedSTDPSynapse< GenericFroemkeDanStdpSynapse< GenericEachPairStdpSynapse< GenericStaticSpikingSynapse< GenericCurrentBasedSpikingSynapse< SquarePulseSpikeResponse > > > > >.

Definition at line 88 of file GenericFroemkeDanStdpSynapse.h.

References GenericFroemkeDanStdpSynapse< BaseSyn >::Aneg, GenericFroemkeDanStdpSynapse< BaseSyn >::Apos, GenericFroemkeDanStdpSynapse< BaseSyn >::muneg, GenericFroemkeDanStdpSynapse< BaseSyn >::mupos, GenericFroemkeDanStdpSynapse< BaseSyn >::STDPgap, GenericFroemkeDanStdpSynapse< BaseSyn >::tauneg, GenericFroemkeDanStdpSynapse< BaseSyn >::taupos, GenericFroemkeDanStdpSynapse< BaseSyn >::tauspost, GenericFroemkeDanStdpSynapse< BaseSyn >::tauspre, GenericFroemkeDanStdpSynapse< BaseSyn >::useFroemkeDanSTDP, and GenericFroemkeDanStdpSynapse< BaseSyn >::Wex.

template<class BaseSyn>
virtual double GenericFroemkeDanStdpSynapse< BaseSyn >::maxRelevantSpikeTimeDiff (  )  [inline, virtual]

Definition at line 76 of file GenericFroemkeDanStdpSynapse.h.


Member Data Documentation

activate extended rule by Froemke and Dan (default=1)

Definition at line 42 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::tauspost

Used for extended rule by Froemke and Dan. See Froemke and Dan (2002). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416 (3/2002).

Definition at line 45 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::tauspre

Used for extended rule by Froemke and Dan.

Definition at line 48 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::taupos

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::tauneg

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::STDPgap

No learning is performed if $|Delta| = |t_{post}-t_{pre}| < STDPgap$.

Definition at line 57 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::Wex

The maximal/minimal weight of the synapse [readwrite; units=;].

Definition at line 60 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::Aneg

Defines the peak of the negative exponential learning window.

Definition at line 63 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::Apos

Defines the peak of the positive exponential learning window.

Definition at line 66 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::mupos

Extended multiplicative positive update: $dw = (Wex-W)^{mupos} * Apos * exp(-Delta/taupos)$. Set to 0 for basic update. See Guetig, Aharonov, Rotter and Sompolinsky (2003). Learning input correlations through non-linear asymmetric Hebbian plasticity. Journal of Neuroscience 23. pp.3697-3714.

Definition at line 69 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().

template<class BaseSyn>
float GenericFroemkeDanStdpSynapse< BaseSyn >::muneg

Extended multiplicative negative update: $dw = W^{muneg} * Aneg * exp(Delta/tauneg)$. Set to 0 for basic update.

Definition at line 72 of file GenericFroemkeDanStdpSynapse.h.

Referenced by GenericFroemkeDanStdpSynapse< BaseSyn >::stdpLearning().


The documentation for this class was generated from the following file:

Generated on Wed Jul 9 16:34:50 2008 for PCSIM by  doxygen 1.5.5