CSIM: LinearPreprocessor Class Reference

LinearPreprocessor Class Reference

#include <linearpreprocessor.h>

Inheritance diagram for LinearPreprocessor:

Preprocessor Advancable csimClass List of all members.

Detailed Description

Implementation of a linear transformation of the input. Every row x_i of the input vector is transformed into x_i' = a_i * x_i + b_i.

Public Member Functions

Private Attributes

Friends


Constructor & Destructor Documentation

LinearPreprocessor::LinearPreprocessor unsigned int  rows = 1  ) 
 

Constructs a new linear transformation. Initially the transformation is an identical transformation x'=x.

Parameters:
rows Number of rows in each input vector.

LinearPreprocessor::~LinearPreprocessor void   ) 
 

Frees the memory.


Member Function Documentation

double * LinearPreprocessor::exportRepresentation int *  rep_length  )  [virtual]
 

Exports the representation of this preprocessor for use in external objects. Format: first number gives the number of rows for input vectors, the following 2*rows elements are in the format [a_1, b_1, a_2, b_2, ..., a_n, b_n], where the transformations are $x_i \cdot a_i + b_i$ .

Parameters:
rep_length Length of the representation vector.
Returns:
A list of parameters that represent the preprocessor.
Warning:
Do not forget to free the memory reserved for the representation!

Implements Preprocessor.

string LinearPreprocessor::getFormatDescription  )  [virtual]
 

Returns a textual description of the representation format for import/export - Representation.

Implements Preprocessor.

int LinearPreprocessor::importRepresentation const double *  rep,
int  rep_length
[virtual]
 

Imports the data from an externally (e.g. Matlab) trained preprocessor.

Parameters:
rep Representation of the preprocessor as a double vector. Format: first number gives the number of rows for input vectors, the following 2*rows elements are in the format [a_1, b_1, a_2, b_2, ..., a_n, b_n], where the transformations are $x_i \cdot a_i + b_i$ .
rep_length Length of the representation vector.
Returns:
-1 if an error occured, 1 for success.

Implements Preprocessor.

int LinearPreprocessor::process const double *  S,
double *  X
[virtual]
 

Preprocess a state representation.

Parameters:
S State of the liquid (= filtered response of the neural microcircuit).
X Target vector where to save the results.
Returns:
-1 if an error occured, 1 for success.

Implements Preprocessor.

void LinearPreprocessor::reset  )  [virtual]
 

Resets the information stored within the preprocessor.

Implements Preprocessor.


 
(C) 2003, Thomas Natschläger last modified 07/10/2006