CSIM: Mean_Std_Preprocessor Class Reference

Mean_Std_Preprocessor Class Reference

#include <mean_std_preprocessor.h>

Inheritance diagram for Mean_Std_Preprocessor:

Preprocessor Advancable csimClass List of all members.

Detailed Description

Implementation of a Mean / Standard-Deviation Normalizer.

Every row x_i of the input vector is transformed into $x_i' = (x_i - m_i) / std_i$ , where m_i and std_i are the mean and standard deviation of the i-th row.

Public Member Functions

Private Attributes

  • double * means
    The means of each input row.
  • double * std_devs
    The standard deviations of each input row.

Friends


Constructor & Destructor Documentation

Mean_Std_Preprocessor::Mean_Std_Preprocessor unsigned int  rows = 1  ) 
 

Constructs a new normalization transformation. Initially the transformation is an identical transformation x'=x.

Parameters:
rows Number of rows in each input vector.

Mean_Std_Preprocessor::~Mean_Std_Preprocessor void   ) 
 

Frees the memory.


Member Function Documentation

double * Mean_Std_Preprocessor::exportRepresentation int *  rep_length  )  [virtual]
 

Exports the representation of this preprocessor for use in external objects. Format: first number gives the number of rows for input vectors, the following 2*rows elements are in the format [m_1, s_1, m_2, s_2, ..., m_n, s_n], where the transformations are $(x_i - m_i) / s_i$ .

Parameters:
rep_length Length of the representation vector.
Returns:
A list of parameters that represent the preprocessor.
Warning:
Do not forget to free the memory reserved for the representation!

Implements Preprocessor.

string Mean_Std_Preprocessor::getFormatDescription  )  [virtual]
 

Returns a textual description of the representation format for import/export - Representation.

Implements Preprocessor.

int Mean_Std_Preprocessor::importRepresentation const double *  rep,
int  rep_length
[virtual]
 

Imports the data from an externally (e.g. Matlab) trained preprocessor.

Parameters:
rep Representation of the preprocessor as a double vector. Format: first number gives the number of rows for input vectors, the following 2*rows elements are in the format [m_1, m_2, ..., m_n, s_1, s_2, ..., s_n], where the transformations are $(x_i - m_i) / s_i$ .
rep_length Length of the representation vector.
Returns:
-1 if an error occured, 1 for success.

Implements Preprocessor.

int Mean_Std_Preprocessor::process const double *  S,
double *  X
[virtual]
 

Preprocess a state representation.

Parameters:
S State of the liquid (= filtered response of the neural microcircuit).
X Target vector where to save the results.
Returns:
-1 if an error occured, 1 for success.

Implements Preprocessor.

void Mean_Std_Preprocessor::reset  )  [virtual]
 

Resets the information stored within the preprocessor.

Implements Preprocessor.


 
(C) 2003, Thomas Natschläger last modified 07/10/2006